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SUMMARY

Evaluating agreement between measurement methods or between observers is important

in method comparison studies and in reliability studies. Often we are interested in whether

a new method can replace an existing invasive or expensive method, or whether multiple

methods or multiple observers can be used interchangeably. Ideally, interchangeability is

established only if individual measurements from different methods are similar to replicated

measurements from the same method. This is the concept of individual equivalence. Inter-

changeability between methods is similar to bioequivalence between drugs in bioequivalence

studies. Following the FDA guidelines on individual bioequivalence, we propose to assess

individual agreement among multiple methods via individual equivalence using the moment

criteria. In the case where there is a reference method, we extend the individual bioequiv-

alence criteria to individual equivalence criteria and propose to use individual equivalence

coefficient (IEC) to compare multiple methods to one or multiple references. In the case

where there is no reference method available, we propose a new IEC to assess individual

agreement between multiple methods. Furthermore, we propose a coefficient of individ-

ual agreement (CIA) that links the IEC with two recent agreement indices. A method of

moments is used for estimation, where one can utilize output from ANOVA models. The

nonparametric and bootstrap approaches are used for inference. Five examples are used for

illustration.

KEY WORDS: agreement; method comparison; bioequivalence; individual equivalence; in-

traclass correlation coefficient; concordance correlation coefficient
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1 Introduction

Evaluating agreement between methods or observers is important in method comparison

studies and reliability studies. Oftentimes, we are interested in whether the observers can be

used interchangeably, or whether a new method that is easy to use can replace an existing

standard method that may be expensive or invasive. For example, when coronary artery

calcium score is used to evaluate a patient’s coronary artery atherosclerosis, it is important

that different radiologists produce similar scores so that they can be used interchangeably. In

physical therapy, different types of machines, such as manual goniometer and Lamoreux-type

electrogoniometer, can be used to measure knee joint angle (Eliaziw et al., 1994) and one

is interested in knowing whether the electogoniometer can replace the manual goniometer.

In a carotid stenosis screening study (Barnhart and Williamson, 2001), one is interested in

knowing whether the two new methods, 2 dimensional flight and 3 dimensional flight, using

the technology of magnetic resonance angiography (MRA), can replace the standard invasive

procedure, intra-arterial angiogram, in measuring carotid stenosis. In a blood pressure study

(Bland and Altman, 1999), one is interested in whether an automatic blood pressure machine

can replace human observers.

Traditionally, assessing agreement has been based on indices such as intraclass correlation

coefficient (ICC) or concordance correlation coefficient (CCC) (McGraw and Wong, 1996;

Carrasco and Jover, 2003, Lin, 1989; Lin, et al. 2002; Barnhart et al. 2005). These indices

depend on between-subject variability. As illustrated in Figure 1 and by Atkinson and

Nevill (1997), large between-subject variability would imply large value of ICC or CCC even

if the individual difference between measurements by the two methods remains the same.

Therefore, it is questionable whether the ICC or the CCC are adequate in establishing

interchangeability of methods or observers. Ideally, interchangeability is established only if

individual measurements from these methods are similar to replicated measurements within
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a method. In other words, the individual difference between measurements from different

methods is small so that this difference is close to the difference of replicated measurements

within a method. This is the concept of individual equivalence. We note that the difference

of replicated measurements can be summarized by within-subject variance. Therefore, we

are interested in individual agreement through individual equivalence where the degree of

individual agreement is defined as closeness between individual measurements relative to the

within-subject variability.

Interchangeability between methods here is similar to individual bioequivalence or switch-

ability between a test drug and a reference drug in individual bioequivalence studies. The

concept of individual bioequivalence was first introduced by Anderson and Hauck (1990) to

establish that the bioavailability of a new formulation is sufficiently close to that of the stan-

dard formulation in most individuals. A probability criteria was introduced there. Sheiner

(1992) used a moment criteria to define individual bioequivalence. Schall and Luus (1993)

extended their ideas and proposed general bioequivalence criteria that included both the

probability criteria and the moment criteria as special cases. The Food and Drug Admin-

istration (FDA) modified and adopted the moment criteria in the recent FDA guidelines

(2001) for establishing individual bioequivalence.

Similar to the FDA guidelines, in this paper, we propose to assess individual agreement

between 2 or more methods using the moment criteria. We consider two situations: (1)

a reference method exists; and (2) no reference method is available. In the case where

there is a reference method, we extend the individual bioequivalence criteria in the FDA

guidelines using individual equivalence coefficient (IEC) to compare multiple methods to

a reference method. We also extend the individual equivalence criteria to the case with

multiple references. In the case where there is no reference method available, we propose a

new IEC to assess individual agreement between multiple methods. Furthermore, we propose

a coefficient of individual agreement (CIA) that links the IEC with two recent agreement
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indices (δ and ψ proposed by Shao and Zhong (2004) and Haber, et al. (2005) respectively),

which may be used to assess individual agreement, a concept presented in this paper.

In section 2, we review the individaul bioequivalence criteria in the FDA guidelines and

the two recent agreement indices. We present the relationships between these parameters

under some assumptions for better understanding. In section 3, we present the new IECs

and CIAs for comparison of multiple methods with and without a reference method. A

method of moment is used for estimation where one can utilize output from ANOVA models.

Nonparametric and Bootstrap approaches are used for inference. Five examples are used for

illustration in section 4. We conclude with a discussion in section 5.

2 Review of Individual Bioequivalence and Agreement

Indices

2.1 Existence of a Reference

We first introduce the FDA guidelines for assessing individual bioequivalence between two

drugs, a test drug T and a reference drug R. Let YiT and YiR be the measurements, e.g.,

logarithm of bioavailability, from the ith subjects after taking test drug T and reference drug

R respectively. To establish bioequivalence at the individual level, the individual difference

between responses from the test and reference drugs is compared to the difference between

two replicated responses from the reference drug. FDA (2001) compared the mean of the

squared differences between responses from test and reference drugs to the mean of the

squared differences between two responses from the reference drug. The reference-scaled

individual bioequivalence criterion is defined as

IBC =
E(YiT − YiR)2 −E(YiR − YiR′)2

E(YiR − YiR′)2)/2
≤ θI
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where the left hand side defines individual equivalence coefficient (IBC), YiR′ is a replication

of YiR and θI is the bioequivalence limit set by the regulatory agency.

The measurement Yij is often re-written as the sum of true value µij and random error

εij , i.e., Yij = µij + εij , j =T, R, with the following common assumptions: µij and εij are

independent with means E(µij) = µj and E(εij) = 0, and between-subject and within-

subject variances of V ar(µij) = σ2
Bj and V ar(εij) = σ2

Wj , respectively. Under this model,

the reference scaled individual equivalence criteria can be re-written by using the population

parameters as

IBC =
(µT − µR)2 + σ2

D + σ2
WT − σ2

WR

σ2
WR

≤ θI

where σ2
WT = V ar(εiT ) and σ2

WR = V ar(εiR) are within-subject variances for T and R

respectively, σ2
D is subject-by-formulation interaction variance component defined as σ2

D =

V ar(µiT − µiR) = (σBT − σBR)2 + 2(1 − ρµ)σBTσBR with ρµ = corr(µiT , µiR) and between-

subject variabilities σ2
BT = V ar(µiT ) and σ2

BR = V ar(µiR). We note that the following

three components (relative to σ2
WR) affect the value of IBC simultaneously: (1) difference of

population means µT − µR; (2) difference of within-subject variances σ2
WT − σ2

WR; and (3)

subject-by-formulation interaction σ2
D. The between-subject variances σ2

BT and σ2
BR have

impact on IBC only through the interaction term σ2
D.

The FDA guidelines also consider a constant-scaled IBC, which uses a constant σ2
W0

in

place of σ2
WR in the denominator when σ2

WR < σ2
W0

. We will discuss issues related to constant

scaling in the discussion section.

2.2 No Reference

Shao and Zhong (2004) proposed an equivalence criterion for assessing agreement between

two methods where none of the methods is considered as a reference. They compared the
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conditional mean of individual difference between responses from two methods relative to

the conditional variance of the individual difference, conditional on the true value of the

subject. Let Yij be a measurement for subject i from method j, j = 1, 2. Shao and Zhong

(2004) defined the agreement index δ as

δ =
E(E(Yi1 − Yi2)

2|ith true value)

E(V ar(Yi1 − Yi2)|ith true value)
.

A satisfactory agreement between methods 1 and 2 corresponds to δ ≤ δ0 where δ0 is a pre-

specified positive constant. Using the above model of Yij = µij +εij with j =1, 2, and further

assuming that conditioning on the ith subject’s true value corresponds to conditioning on

µi1 and µi2, then E(E(Yi1 − Yi2)
2|ith true value) = E(µi1 − µi2)

2 = (µ1 − µ2)
2 + σ2

D and

E(V ar(Yi1 − Yi2)|ith true value) = σ2
W1 + σ2

W2. Therefore,

δ =
(µ1 − µ2)

2 + σ2
D

σ2
W1 + σ2

W2

.

We see that δ is the ratio of expected individual true difference E(µi1−µi2)
2 to the sum of the

two within-subject variances. In other words, δ compares the individual sqaured difference

between the two methods to the random variability due to replication. Therefore, δ may be

considered as an index for assessing individual agreement.

The IBC and δ differ in the following ways: (1) the IBC is developed when one of the

methods is a reference, and the δ is developed when neither methods can be considered as a

reference; (2) the IBC uses the expected individual squared difference E(YiT − YiR)2 at the

observed level rather than E(µi1−µi2)
2 at the true level; (3) the IBC uses subtraction (with a

scaling factor) rather than ratio when comparing individual difference to the within-subject

variance. Therefore, when comparing individual sqaured difference to the within-subject

variance, only the within-subject variance from the reference method is used in IBC, while

both within-subject variances are used for this comparison in δ.

Despite the differences between the IBC and δ, they are mathematically related. If we

denote the first method as T and the second method as R even though R is not considered
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as a reference, both the IBC and δ are functions of E(µiT − µiR)2 and the within-subject

variances from both methods. They have the following relationship:

IBC =
σ2

WT + σ2
WR

σ2
WR

(δ +
σ2

WT − σ2
WR

σ2
WT + σ2

WR

).

Under the assumption of equal within-subject variances: σ2
WT = σ2

WR, i.e., σ2
W1 = σ2

W2, we

have IBC = 2δ.

Haber et al. (2005) proposed an agreement index ψ for assessing agreement between

J observers without reference. For comparison purposes, the J observers are treated as J

methods here and we pay special attention to the case of J = 2 with two methods. Let index

j, j = 1, . . . , J to denote jth method. Using the same model Yij = µij + εij , Haber et al.

(2005) defined (true) individual inter-method variability for subject i as the between-method

variance of the true values µij, τ
2
i =

∑

j(µij − µi•)
2/(J − 1). They defined an agreement

index ψ by comparing the expected individual inter-method variability τ 2
∗

= E(τi) to the

average of within-subject variances σ2
∗

=
∑

j σ
2
Wj/J , scaled to be between 0 and 1.

ψ =
σ2
∗

τ 2
∗

+ σ2
∗

.

We can see that ψ can be used as an index to assess individual agreement because it compares

individual difference relative to within-subject variance. To understand how inter-method

variability is related to pairwise differences, we note the following relationship

∑

j

(µij − µi•)
2/(J − 1) =

J−1
∑

j=1

J
∑

j′=j+1

(µij − µij′)
2/(J(J − 1)).

For J = 2, we have τ 2
i = (µi1 − µi2)

2/2, half of the individual difference at the true value

level. In this case, we have 2τ 2
∗

= E(µi1 − µi2)
2 = (µ1 − µ2)

2 + σ2
D and 2σ∗ = σ2

W1 + σ2
W2.

Thus,

ψ =
σ2

W1 + σ2
W2

(µ1 − µ2)2 + σ2
D + σ2

W1 + σ2
W2

.

Like index δ, ψ differs from the IBC the same way as δ differs from the IBC. Both ψ and

δ are developed when none of the methods are considered as reference, and they are related
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by the following relationship:

ψ =
1

δ + 1
, or δ =

1 − ψ

ψ
.

We denote the first method as T and the second method as R, even though the second

method is not considered as a reference here. The IBC and ψ have the following mathematical

relationship:

IBC = 2
τ 2
∗

+ σ2
∗
− σ2

WR

σ2
WR

= 2(
σ2
∗

σ2
WR

1

ψ
− 1)

or equivalently

ψ =
σ2
∗•

σ2
WR

2

(IBC + 2)
.

Under the additional assumption of equal within-subject variances: σ2
WT = σ2

WR, we have

IBC =
2(1 − ψ)

ψ
, or ψ =

2

(IBC + 2)
.

The FDA (2001) recommended to use IBC bound of θI = [(log(1.25))2 + 0.05]/0.22 =

2.494827 for declaring individual bioequivalence when IBC ≤ θI . Under the assumption of

equal within-subject variances, i.e., σ2
WT = σ2

WR or σ2
W1 = σ2

W2, this bound corresponds to

δ0 = θI/2 = 1.2474 and index ψ ≥ 0.445 for assessing individual agreement. Note that if

τ 2
∗

= σ2
∗
, i.e., the true inter-method variability is the same as the average of within-subject

variability σ2
∗
, e.g., the (expected) true individual squared difference between the test and

reference methods is the same as the expected squared difference due to replication, then we

have ψ = 0.5. Using the FDA’s criteria for ψ, i.e., ψ ≥ 0.445, it implies that the inter-method

variability (τ 2
∗
) is within 125% of the within-subject variance (σ2

∗
).

In summary, the IBC can be used to assess individual agreement via individual equiva-

lence between two methods where one of them is considered as a reference. The agreement

indices δ and ψ can be used to assess individual agreement between two methods via indi-

vidual equivalence between two methods where none of them are considered as a reference.
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When the within-subject variance based on the reference method is the same as the within-

subject variance based on the test method, the IBC and the agreement indices δ and ψ

have simple one-to-one relationships and their interpretations complement each other. In

practice, there may be more than one test method, e.g, the two new methods in the carotid

stenosis screening study, that need to be compared with the reference method. If there is

no reference, one can use the agreement index ψ developed for comparison between these

multiple methods. The natural questions are (1) how to extend the IBC and ψ to com-

pare multiple methods versus a reference, and (2) whether one can extend IBC to compare

multiple methods without reference. These questions are addressed in the next section.

3 Assessing Individual Agreement between Multiple

Methods

3.1 Existence of a Reference Method

Suppose that there is a total of J methods with the first J −1 methods as new methods and

the Jth method as a reference method. For the ith individual, let Yij be the measurement

from the jth method, and YiJk and YiJk′ be the replicated measurements from the reference

method.

Similar to FDA’s individual bioequivalence criteria, we propose to assess individual agree-

ment between J−1 methods against a reference method by using the individual equivalence

coefficient (IEC):

IECR =
(
∑J−1

j=1 E(Yij − YiJ)2)/(J − 1) − E(YiJk − YiJk′)2

E(YiJk − YiJk′)2/2
, (1)

where superscript R indicates that a reference is utilized. Using the model Yij = µij + εij
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with the same assumption as in section 2, the above can be re-written as

IECR =

∑J−1
j=1 (µj − µJ)2 +

∑J−1
j=1 σ

2
DjJ

+
∑J−1

j=1 σ
2
Wj − (J − 1)σ2

WJ

(J − 1)σ2
WJ

, (2)

where σ2
DjJ

= V ar(µij − µiJ). We use acronym IEC rather than IBC because it is intended

for use in any continuous measurement rather than restricted to bioavailability measures.

We propose the following coefficient of individual agreement (CIA) that is similar to ψ

in section 2.2 by treating the Jth method as reference.

CIAR = ψR =
E(YiJk − YiJk′)2

∑J−1
j=1 E(Yij − YiJ)2/(J − 1)

=
σ2

WJ

τ 2
∗R + σ2

∗R

,

where the true inter-method variability is

τ 2
∗R = E(

∑J−1
j=1 (µij − µiJ)2

2(J − 1)
) =

1

2
(

∑J−1
j=1 (µj − µJ)2

J − 1
+

∑J−1
j=1 σ

2
DjJ

J − 1
),

and the weighted average of within-subject variability σ2
∗R is

σ2
∗R =

1

2
(

∑J−1
j=1 σ

2
Wj

J − 1
+ σ2

WJ).

In practice, the within-subject variance in the reference method is likely to be smaller than

the ones from the new methods, i.e., σ2
WJ ≤ σ2

Wj, thus, we have 0 ≤ ψR ≤ 1. Otherwise, ψR

may be greater than 1. With these new definitions, the relationship between IECR and ψR

is as follows,

IECR =
2(τ 2

∗R + σ2
∗R) − 2σ2

WJ

σ2
WJ

=
2(1 − ψR)

ψR
), , or ψR =

2

IECR + 2
.

If we use IECR
jJ to denote the IEC value comparing the jth method and the reference, then

the overall IECR is the average of these pairwise IECs:

IECR =
J−1
∑

j=1

IECR
jJ/(J − 1). (3)

For J = 2, IECR reduces to IBC. In this case, τ 2
∗R and and σ2

∗R are the same as the τ 2
∗

and σ2
∗

(see section 2.2) defined by Haber et al. (2005) when there is no reference.
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In general, we want to have low value of IECR and high value of ψR to claim satisfac-

tory individual agreement. One may use the FDA recommended boundary of θI = 2.4948

or equivalently, to have ψR ≥ 0.445 for good individual agreement. Several factors can con-

tribute to unsatisfactory individual agreement: (1) population means from the test methods

are different from the mean from the reference method; (2) within-subject variances from

the test methods are different from the within-subject variance from the reference method;

(3) inter-method variability is large, which may be caused by the difference in population

means or subject-by-method interaction σ2
DR

, where σ2
DR

=
∑J−1

j=1 σ
2
DjR

/(J − 1). Therefore,

when reporting estimates on IECR and CIAR, it may be useful to report estimates on

µj, σ
2
Wj, j = 1, . . . , J, τ 2

∗R, σ
2
DR

, and σ2
∗R.

Estimation and Inference

To estimate IECR using equation (2), replicated measurements for each individual by

each method are needed in order to estimate σ2
Wj, σ

2
WR and σ2

DjR
. In bioequivalence studies,

a cross-over design is usually used in order to obtain replications under the assumption of

no carry-over effect. However, in agreement studies, replications can normally be obtained

with simple parallel design because the methods usually do not have a lasting effect on the

individual. With the parallel design, let Yijk, i = 1, . . . , n, j = 1, . . . , J, k = 1, . . . , K be

the observed measurements for individual i, method j and replication k. For simplicity,

we assume equal number of replications within each subject and method even though the

approach can be applied to unequal number of replications. The method of moment can

be used to estimate IECR and ψR. Specifically, the unbiased estimates for within-subject

variances are as follows,

σ̂2
Wj = MSEWj =

∑

ik(Yijk − Yij•)
2

n ∗ (K − 1)
, j = 1, . . . , J,

Note that

E[(Yij• − YiJ•)
2] = E[(µij − µiJ)2] +

σ2
Wj

K
+
σ2

WJ

K
.
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Thus, the unbiased estimates for τ 2
∗R and σ2

∗R are

τ̂ 2
∗R =

∑n
i=1

∑J−1
j=1 (Yij• − YiJ•)

2

2(J − 1)n
−

∑J−1
j=1 MSEWj

2(J − 1)K
−
MSEWJ

2K
,

σ̂2
∗R = (

∑J−1
j=1 MSEWj

J − 1
+MSEWJ)/2.

Therefore, we have

ˆIEC
R

=
2(τ̂ 2

∗R + σ̂2
∗R −MSEWJ)

MSEWJ
, ψ̂R =

MSEWJ

τ̂ 2
∗R + σ̂2

∗R

.

To see how the subject-by-method interaction affects the inter-method variability τ 2
∗R, we

can also calculate an estimate for σ2
DR

as

σ̂2
DR

= 2τ̂ 2
∗R −

∑

j(µ̂j − µ̂J)2

J − 1
,

where µ̂j = Y•j•, µ̂J = Y•J• are the estimates for the population means.

We note that the above estimate for ψR can be re-written as

ψ̂R =
2A•J

BR
•

=
2

∑n
i=1AiJ

∑n
i=1B

R
i

where A•J and BR
•

are means of i.i.d. random variables AiJ and BR
i , respectively, with

Aij =

∑

k(Yijk − Yij•)
2

K − 1
, i = 1, . . . , n, j = 1, . . . , J

and

BR
i =

∑J−1
j=1 (Yij• − YiJ•)

2

J − 1
+ (1 −

1

K
)

∑J−1
j=1 Aij

J − 1
+ (1 −

1

K
)AiJ , i = 1, . . . , n.

We use the delta method to estimate the variance of a ratio:

V ar(
A•J

BR
•

) ≈ (
A•J

BR
•

)2[
V ar(A•J)

A2
•J

+
V ar(BR

•
)

(BR
•
)2

−
2Cov(A•J , B

R
•
)

A•JBR
•

],

where V ar(A•J), V ar(BR
•
) and Cov(A•J , B

R
•
) can be estimated empirically, e.g., ˆV ar(A•J ) =

ˆV ar(AiJ)/n =
∑n

i=1(AiJ−A•J)2/(n(n−1)), ˆV ar(BR
•
) = ˆV ar(BR

i )/n =
∑n

i=1(B
R
i −B

R
•
)2/(n(n−

1)) and ˆCov(A•J , B
R
•
) = ˆCov(AiJ , B

R
i )/n =

∑n
i=1(AiJ −A•J )(BR

i −BR
•
)/(n(n− 1)). Thus, a
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non-parametric estimate for the s.e. of ψ̂R is s.e.(ψ̂R) = 2 ∗
√

ˆV ar(A•J/BR
•
). One can then

obtain the 95% confidence interval (CI) as (ψ̂R − 1.96 ∗ s.e.(ψ̂R), ψ̂R + 1.96 ∗ s.e.(ψ̂R).

The bootstrap percentile method can also be used to obtain 95% CI for IECR and ψR

because it is easy and fast to compute these estimates. Specifically, m (say 10,000) samples

with replacement can be taken from the n subjects where the sampling unit is subject, not

measurement. We then apply the above estimation method and obtain m estimates of IECR

and ψR. The lower 2.5percentiles of the ψR estimates are the 95% CI for ψR.

The estimates of ˆIEC
R

and ψ̂R can also obtained via ANOVA models that require

minimum programming. Specifically, the sums of squares from two sets of ANOVA models

can be used to compute MSEWj, MSEWJ , τ̂ 2
∗R, and thus ˆIEC

R
and ψ̂R. The first set of

the J ANOVA models is used to obtain MSEWj , MSEWJ and the second set of the (J − 1)

ANOVA models is used to obtain τ̂ 2
∗R. The MSEWj corresponds to the mean square error

terms in the following first set of J one way ANOVA models

Yijk = µ+ αi + εijk, j = 1, . . . , J.

For each method j, we fit the second set of (J − 1) two way ANOVA models (without main

effect for the method) for measurements made only by the jth method and the Jth method

(reference method).

Yij′k = µ+ αi + γij′ + εij′k, j
′ = j, or J

Let MSjJ and MSEjJ denote the mean squares for the interaction term γij and the error

term εijk, respectively. It can be shown that

MSjJ −MSEjJ

K
=

∑

i(Yij• − YiR•)
2

2n
−
MSEWj +MSEWJ

2K
.

Thus, we have

τ̂ 2
∗R =

∑

j(MSjJ −MSEjJ)

K(J − 1)
.
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Based on definition of IECR in equation (1), it is not necessary to have replications

in the test methods in order to estimate IECR. However, replications from the reference

method are needed. Let Yij be the measurement for subject i by method j and YiJk be the

measurement for subject i by reference method with replication k. Then we can estimate

σ2
WJ as above and estimate IECR and ψR by

ˆIEC
R

=

∑J−1
j=1 Ê(Yij − YiJ)2/(J − 1) − 2σ̂2

WJ

σ̂2
WJ

, ψ̂R =
2

ˆIEC
R

+ 2
,

where Ê(Yij−YiJ )2 =
∑

k(Yij−YiJk)
2/K. Note that we would not be able to obtain estimates

for σ2
DR

and σ2
∗R. We illustrate this approach with example 5 in section 4. The two estimation

approaches based on equations (1) and (2) should yield similar results because the common

assumptions on model Yij = µij + εij (see section 2) are usually reasonable in practice.

Extension to Multiple References

In practice, there may be multiple reference methods available. For example, in the

blood pressure data example from Bland and Altman (1999), the new automatic machine is

compared to two human observers, where both human observers are treated as a reference.

Suppose that there are J new methods and R multiple references with a total of J + R

methods, we extend IECR and ψR as follows:

IECR =
(
∑

r

∑

j E(Yij − Yir)
2)/(JR) −

∑

r E(Yirk − Yirk′)2/R
∑

r E(Yirk − Yirk′)2/(2R)
, ψR =

2

IECR + 2
.

If we use model Yij = µij + εij with the assumptions in section 2.1, we have

IECR =

∑

r

∑

j(µj − µr)
2/(JR) +

∑

r

∑

j σ
2
Djr
/(JR) +

∑

j σ
2
Wj/J −

∑

r σ
2
Wr/R

∑

r σ
2
Wr/R

=
2(τ 2

∗R + σ2
∗R) − 2

∑

r σ
2
Wr/R

∑

r σ
2
Wr/R

==
2(1 − ψR)

ψR
,

where the inter-method variability τ 2
∗R and weighted within-subject variability σ2

∗R are defined

as

τ 2
∗R =

1

2

∑

r

∑

j E(µij − µir)
2

JR
=

1

2
(

∑

r

∑

j(µj − µr)
2

JR
+

∑

r

∑

j σ
2
Djr

JR
),
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σ2
∗R =

1

2
(

∑

j σ
2
Wj

J
+

∑

r σ
2
Wr

R
).

The ψR can be re-written as

ψR =

∑

r E(Yirk − Yirk′)2

∑

r

∑

j E(Yij − Yir)2/J
=

∑

r σ
2
Wr/R

τ 2
∗R + σ2

∗R

.

Estimation and reference on IECR and ψR can be carried out similarly as described above

for data with replications by both new and reference methods or for data with replications

only by the reference methods.

3.2 No Reference Method

If there is a total of J methods and none of them can be considered as a reference, we

compare the average of all possible squared individual differences between methods to the

average of J within-subject variances from these methods. Specifically, we propose to assess

individual agreement between J methods by IEC or equivalentaly CIA with

IECN =
2(

∑J−1
j=1

∑J
j′=j+1E(Yij − Yij′)

2)/(J(J − 1)) −
∑

j E(Yijk − Yijk′)2/J
∑

j E(Yijk − Yijk′)2/(2J)

=
2(

∑J−1
j=1

∑J
j′=j+1((µj − µj′)

2 + σ2
Djj′

+ σ2
Wj + σ2

Wj′))/(J(J − 1)) − 2σ2
∗

σ2
∗

=
2τ 2

∗

σ2
∗

,

and

CIAN = ψN =

∑J
j=1E(Yijk − Yijk′)2/2

∑J−1
j=1

∑J
j′=j+1E[(Yij − Yij′)2]/(J − 1)

=
σ2
∗

τ 2
∗

+ σ2
∗

where τ 2
∗

and σ2
∗

are the true inter-method variability and within-method variability as

defined in Haber, et al. (2005),

τ 2
∗

=
E(

∑

j(µij − µi•)
2)

J − 1
=

1

2
(
2

∑J−1
j=1

∑J
j′=j+1(µj − µj′)

2

J(J − 1)
+ σ2

D), σ2
∗

=
∑

j

σ2
Wj/J,

with σ2
D = 2

∑J−1
j=1

∑J
j′=j+1 σ

2
Djj′

/(J(J − 1)) and σ2
Djj′

= V ar(µij − µij′). We note that ψN is

the same as the agreement index ψ defined in Haber et al. (2005). In general, 0 ≤ ψN ≤ 1
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and the relationship between IECN and ψN is the same as in the case when there is a

reference method, i.e.,

IECN =
2(1 − ψN)

ψN
, or ψN =

2

IECN + 2
.

The interpretation of IECN and ψN are similar to IECR and ψR in section 3.1.

Let IECN
jj′ denote the pairwise IEC comparing jth and j′th methods without reference.

Then one can show that the overall IECN is the weighted average of the pairwise IECN
jj′’s,

IECN =
2(

∑J−1
j=1

∑J
j′=j+1wjj′IEC

N
jj′)

J(J − 1)
, where wjj′ =

(σ2
Wj + σ2

Wj′)/2
∑

j σ
2
Wj/J

. (4)

If the within-subject variances are equal, then the IECN is the simple average of the pairwise

IECN
jj′’s.

Relationship between IECN and IECR

If the Jth method is treated as a reference, IECR and CIAR defined in section 3.1

are not the same as IECN and CIAN in general when the Jth method is not treated as a

reference. Note that

IECN
jJ =

E(Yij − YiJ)2 − (σ2
Wj + σ2

WJ)

(σ2
Wj + σ2

WJ)/2
=
E(Yij − YiJ)2 − 2σ2

WJ − (σ2
Wj − σ2

WJ)

(σ2
Wj + σ2

WJ)/2

=
IECR

jJσ
2
WJ − (σ2

Wj − σ2
WJ)

(σ2
Wj + σ2

WJ)/2
,

where IECR
jJ is the IEC comparing methods j and J with the Jth method as a reference.

In practice where Jth method is a reference, we may expect that σ2
WJ ≤ σ2

Wj which implies

that IECN
jJ ≤ IECR

jJ . Equality occurs when σ2
WJ = σ2

Wj . Using equations (3) and (4), we

find that

IECN =
2(

∑J−2
j=1

∑J−1
j′=j+1wjj′IEC

N
jj′ +

∑J−1
j=1 wjJIEC

N
jJ)

j(J − 1)

=
2(

∑J−2
j=1

∑J−1
j′=j+1wjj′IEC

N
jj′ +

∑J−1
j=1 wjJ

IECR
jJ

σ2

WJ
−(σ2

Wj
−σ2

WJ
)

(σ2

Wj
+σ2

WJ
)/2

)

J(J − 1)
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=

2(
∑J−2

j=1

∑J−1
j′=j+1wjj′IEC

N
jj′ +

σ2

WJ
∑J

j=1
σ2

Wj
/J

∑J−1
j=1 IEC

R
jJ −

J
∑J−1

j=1
(σ2

Wj
−σ2

WJ
)

∑J

j=1
σ2

WJ

)

J(J − 1)

= IECN
(J−1)

J − 2

J
+ IECR 2σ2

WJ
∑J

j=1 σ
2
Wj

−
2

∑J−1
j=1 (σ2

Wj − σ2
WJ)

(J − 1)
∑J

j=1 σ
2
WJ

,

where IECN
(J−1) is the IEC comparing the first J−1 methods without a reference. In general,

if the Jth method is a reference, we expect that σ2
WJ ≤ σ2

Wj , j = 1, . . . , J − 1. This implies

that IECN
jj′ ≤ IECR

jJ and thus IECN
(J−1) ≤ IECR. Therefore, we have that IECN ≤ IECR

and ψN ≥ ψR. Intuitively, this means that if the within-subject variances are larger than

the within-subject variance from the reference, it should be harder to claim satisfactory

individual agreement using ψR than using ψN . We have ψN = ψR if σ2
Wj = σ2

WJ for all j.

Estimation and Inference

Let Yijk be the measurements for the ith subject, by the jth method at the kth repli-

cation, i = 1, . . . , n, j = 1 . . . , J, k = 1, . . . , K. The method of moment is again used for

estimation of IECN and ψN . As shown in Haber et al. (2005), the unbiased estimates for

τ 2
∗

and σ2
∗

are as follows:

τ̂ 2
∗

=

∑

ij(Yij• − Yi••)
2

I(J − 1)
−

∑

ijk(Yijk − Yij•)
2

IJK(K − 1)
,

σ̂2
∗

=

∑

ijk(Yijk − Yij•)
2

IJ(K − 1)
.

Therefore, the estimate for IECN and ψN are

ˆIEC
N

=
2τ̂ 2

∗

σ̂2
∗

, or ψ̂N =
σ̂2
∗

τ̂ 2
∗

+ σ̂2
∗

.

One can also obtain estimate for σ2
D as

σ̂2
D = 2τ̂ 2

∗
−

2
∑J−1

j=1

∑J
j′=j+1(Y•j• − Y•j′•)

J(J − 1)
.

Similar to section 3.1, the above estimate for ψN can be re-written as ratio of the means

of iid random variables:

ψ̂N =
A••

BN
•

=

∑n
i=1Ai•

∑n
i=1B

N
i
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where Ai• =
∑J

J=1Aij/J with Aij =
∑

k(Yijk − Yij•)
2/(K − 1) and

BN
i =

∑J
j=1(Yij• − Yi••)

2

J − 1
+ (1 −

1

K
)

∑J
j=1Aij

J

=

∑J−1
j=1

∑J
j′=j+1(Yij• − Yij′•)

2

J(J − 1)
+ (1 −

1

K
)

∑J
j=1Aij

J
.

Thus, we can obtain nonparametric estimate for the s.e. of ψ̂N by delta method for the

variance of the ratio and then the 95% CI for ψN . The percentile bootstrap method can also

be used to obtain the 95% CI for ψN .

For easy computation, one can also utilize a two way ANOVA model to compute the

estimates of IECN and ψN . If we fit the following two way ANOVA model without main

effect for method,

Yijk = µ+ αi + γij + εijk,

and let MS and MSE be the mean square terms corresponding to the interaction term γij

and the error term εijk, then we have

τ̂ 2
∗

=
MS −MSE

K
, and σ̂2

∗
= MSE.

Thus,

ˆIEC
N

=
2(MS −MSE)

K ∗MSE
, and ψ̂N =

K ∗MSE

MS + (K − 1) ∗MSE
.

4 Examples

Five examples are used to illustrate the proposed concepts and methodology in assessing

individual agreement via individual equivalence. The first example compares two machines

where one of them may or may not be treated as a reference. The second example compares

two radiologists where neither of them is considered as a reference. Example three compares

three methods in measuring carotid artery stenosis, where one of the methods is a standard
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method. Example four compares two human observers to an automatic machine in measuring

blood pressure, where both human observers are treated as references. The last example

compares a new digital device to human observers in measuring blood pressure, where no

replicated measurements were taken by the new method.

In all examples, we compute estimates and the 95% CIs based on nonparametric and

percentile bootstrap (based on 10,000 bootstrap samples) approaches for IEC and CIA for

cases of with and without a reference when applicable. For better interpretation and un-

derstanding the results, we also provide estimates for population means (µ), within-subject

variances (σ2
W ), between-subject variances (σ2

B), intra-class correlations (ICC) (based on

one-way ANOVA model, Barnhart, et al., 2005) for each method, aggregated within-subject

variability (σ2
∗
), and subject-by-method interaction (σ2

D). It is useful to compare the magni-

tudes of τ 2
∗

with σ2
∗
, and 2τ 2

∗
with σ2

D. In the tables, we drop the superscripts R and N , and

we label which method is a reference when applicable. Because IEC and CIA are equivalent

coefficients, we only display the numbers for CIA in the tables.

Example 1. Manual Goniometer vs Electrogoniometer

Eliasziw et al. (1994) presented data from a study that compared a large universal

plastic manual goniometer and a Lamoreux-type electrogoniometer for measuring knee joint

angle (in degrees). Twenty-nine individuals (n=29) were measured three consecutive times

(K=3) on each goniometer. The estimates for population means, within and between-subject

variability as well as intraclass correlations by goniometer, are displayed in the first part of

Table 1. The electrogoniometer produced a slightly smaller mean angle than the manual

goniometer, and had slightly larger within-subject variance than the manual goniometer.

The between-subject variances (53.8 and 51.4 ) are much larger than the within-subject

variances (0.736 and 0.977) and, this fact leads to high values of ICC.

When the manual goniometer is treated as a reference, the moment estimate (95% CI)
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of ψR is 0.246 (0.132, 0.361). This implies that the electrogoniometer does not have good

individual agreement with the manual goniometer. If the manual goniometer is not treated

as a reference, the moment estimate (95% CI) of ψN is 0.287 (0.149, 0.425). Again, individual

agreement between the two goniometers is not very good although Eliasziw et al. reported

ICC value of 0.961 based on ANOVA model for assessing inter-method reliability. This high

value is largely due to substantial between-subject variability.

Examples 2. Comparison of two radiologiests in calcium scoring

In this example, we are interested in knowing whether two radiologists (J=2) can be

used interchangeably when they grade the coronary artery calcium score. Neither of the

radiologists is considered as a reference. Two replicated readings (K=2) are obtained from

these two radiologists for 12 patients (n=12) (see data in Haber et al., 2005). While there are

some differences in mean score and within-subject variability between the two radiologists,

the between-subject variabilities are huge which lead to intra ICCs (> 0.99) close to the

boundary (Table 2). The point estimate for ψN is 0.754 that may indicate good agreement.

However, the 95% CI of ψN) is (0.298, 1.0) impling that there is not enough information,

due to small sample, to claim good individual agreement.

Example 3. Carotid Stenosis Data

This example compares three methods (J=3) in measuring carotid stenosis. The study

was designed to compare two new methods, two-dimensional magnetic resonance angiography

(MRA-2D) and three-dimensional MRA (MRA-3D), to the standard practice, invasive intra-

arterial angiogram (IA) (Barnhart and Williamson, 2001). Clearly the standard method

should be viewed as reference although our previous analysis treated IA as another method

for illustration. Here we report our results both ways where IA is treated or is not treated as

a reference. Three raters used each of the three methods to assess carotid stenosis on each of

55 patients (n=55). For illustration, we assume that readings by the three raters using the
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same method are replicates (K=3), the same assumption as we did in the previous analysis

(Barnhart, et al, 2005). The readings ranged from 0% to 100% blockage of the artery and

the results are displayed separately for left and right arteries (Tables 3 and 4).

For both left and right carotid arteries, the MRA-2D and MRA-3D produced higher

mean stenosis and higher within-subject variances than the IA method. Between-subject

variances are comparable across the three methods. The intra ICC is higher for the IA

method (0.884 for left and 0.916 for right) than for the MRA-2D and MAR-3D methods

(0.626 and 0.647 for left, and 0.610 and 0.622 for right). The estimates of CIA as well as the

95% CIs are very different for the two cases where IA is treated or is not treated as reference.

If the IA method is treated as a reference, one would conclude that MRA-2D and MRA-3D

do not have good individual agreement with the IA method. If the IA method is not treated

as a reference, the MRA-2D and MRA-3D have satisfactory individual agreement with the IA

method. This difference in conclusion is mainly due to the the fact that there is substantially

lower within-subject variability by the IA method than by MRA-2D and MRA-3D methods

(e.g. 139.7 vs. 576.7 or 520.2 for left carotid artery). The pairwise comparisons show that

MRA-2D and MRA-3D agree well where neither method is treated as a reference. Neither

the MRA-2D nor the MRA-3D method has good individual agreement with the IA method

where the IA method is a reference.

Example 4. Bland and Altman BP data

Bland and Altman (1999) presented data on systolic blood pressure from a study where

two experienced human observers (denoted observers 1 and 2) and a semi-automatic blood

pressure monitor (denoted machine) made three quick successive observations (K=3) on 85

individuals (n=85). They used a different subset of the data to illustrate different concepts

of their methodology. By checking the original source of the data (see Bland and Altman,

1991), it appears that the semi-automatic blood pressure monitor was developed to replace
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human observers, and the human observers should be considered as references. Therefore,

we have a situation with two references (R=2 human observers) and one new method (J=1).

For comparison purposes, we also report results where the human observers are not treated

as references.

The simple statistics in table 5 show that the semi-automatic machine produced higher

mean systolic blood pressure and higher within-subject variability than the two human ob-

servers. Because there is substantial between-subject variability, the intra ICC have high

values for both human observer and the semi-automatic machine. The CIA and the cor-

responding 95% CIs are substantially less than 0.445, regardless of whether the human

observers are treated as references or not. This implies that the semi-automatic blood pres-

sure monitor does not have good individual agreement with human observers, and thus one

would not want to replace human observers with the semi-automatic machine. The pairwise

comparisons show that the two human observers have excellent individual agreement. In

fact, the true difference between the two human observers is estimated to be smaller than

the difference due to replication which lead to negative point estimate for τ 2
∗

based on our

formula. (Negative estimate can happen when different variance components are estimated

separately, and we recommend setting τ̂ 2
∗

= 0 in this case).

Example 5. Digital Blood Pressure Device vs. Human Observer

In a study that investigated whether the digital blood pressure device can replace a hu-

man observer in a field study (Torun, et al, 1998), 228 subjects (n=228) were measured by

a new digital device once, and then by three human observers. Example 4 shows that the

two human observers have excellent individual agreement. This implies that the readings by

experienced observers may be treated as replicates from the same experienced observer. For

illustration, we extrapolate these results from example 4 to this example and treat the three

readings from the three human observers as replicated readings. This allows us to demon-
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strate that one can estimate ψR when there are replications by the reference method, but no

replications by the new method. The point estimate (95% CI) of ψN are 0.462 (0.360, 0.578)

and 0.729 (0.633, 0.826) for systolic and diastolic blood pressure, respectively. This implies

that the digital device has borderline individual agreement with regards to systolic blood

pressure, and good individual agreement with respect to diastolic blood pressure. We can

interpret CIAR similarly. For comparison, Barnhart and Williamson (2001) reported pooled

CCC as 0.973 and 0.951 for systolic and diastolic blood pressure respectively. These numbers

are reflected by a considerable between-subject variability and relatively small within-subject

variability by the human observer.

5 Discussion

In this paper, we have proposed two equivalent coefficients, IEC and CIA, for assessing

individual agreement between multiple methods for scenarios of existing reference or no

reference. The concept of individual agreement provides a quantitative assessment when one

wants to replace an existing method with a new method or using the several new methods

(or observers) interchangeably. The illustration of five examples show that the concepts have

wide applications in variaty of agreement studies.

A simulation study to investigate the bias and mean square error of the proposed es-

timates of CIA has been reported in a separate paper (Haber and Barnhart, 2007) for the

case of two methods. We found that our approach performs consistently well for different

combinations of true parameter values and sample sizes with 2 or 3 replications.

As mentioned in the introduction, the CCC increases as the between-subject variability

increases evan though the individual difference between any two readings remains the same.

We provide a in-depth comparison on the properties of the CCC and the CIA in Barnhart et
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al. (2007) where the relationship between CCC and CIA as well as the impact of between-

subject variability are presented algebraically and graphically. We also propose there a new

CCC for multiple methods where one of them is treated as reference.

We proposed a nonparametric and bootstrap approaches for inference. A generalized

estimating equations approach used in Barnhart and Williamson (2001) can be modified for

both estimation and inference.

As illustrated in example 3, one should be cautious in interpreting results when the

within-subject variances differ greatly between the methods. In this case, one may consider

using one of the methods as a reference and look into results from pairwise comparisons.

We used the reference-scaled approach of IBC to define our IEC. If the within-subject

variance due to replication is very small, the IEC value would appear to be very large when

this within-subject variance is used in the demoninator for scaling. In this case, a constant

scaled IEC may be preferred and we can extend our concept accordingly. For example, if the

Jth method is a reference and σ2
J ≤ σ2

J0 where σ2
J0 is the maximum tolerable within-subject

variance, one can define constant-scaled IEC as

IECR =
(
∑J−1

j=1 E(Yij − YiJ)2)/(J − 1) − 2σ2
J0

σ2
J0

.

and the corresponding CIA as

CIAR =
2σ2

J0
∑J−1

j=1 E(Yij − YiJ)2)/(J − 1)
.

The individual equivalence bound is based on upper limit of IEC, θI = 2.4948 or lower

limit of CIA, CIAI = 0.445. It is possible that this criterion is too strict for claiming

individual equivalence for some continuous scales. One may choose the boundary based on

subject matter. For example, it may be reasonable to conclude individual equivalence if

the inter-method variability is within 150% of within-subject variability for systolic blood

pressure. This would imply that θI = 3 and CIAI = 0.4.
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We used moment criteria to assess individual agreement via individual equivalence. In

the bioequivalence literature, a probability criterion (Schall and Luus, 1993) was also pro-

posed for establishing individual bioequivalence. This is closely related to the coverage prob-

ability and total deviation index approaches in the agreement literature (Lin, et al, 2002).

However, the latter approaches only consider the probability of individual difference falling

within a boundary, rather than magnitude of this probability relative to the probability of

the difference between replications falling within the same boundary. If the boundary is cho-

sen so that this latter probability based on replications is 1, then the coverage probability

and total deviation index approaches may be used to assess individual agreement.
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Figure 1. Dependency of ICC and CCC on between-subject variability
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Table 1. Comparison of Manual Goniometer and Electrogoniometer

Manual Goniometer Electro-goniometer

Estimate Estimate Difference

µ 1.437 0.046 1.391

σ2
W 0.736 0.977 -0.241

σ2
B 53.8 51.4 2.4

Intra ICC 0.986 0.982 0.004

Individual Agreement

Reference: Manual Goniometer No reference

estimate (95% CI) 95% bCI∗ Estimate (95% CI) 95% bCI∗

CIA 0.246 (0.132, 0.361) (0.155, 0.387) 0.287 (0.149, 0.425) (0.176, 0.442)

τ 2
∗

2.130 – 2.130 –

σ2
D 2.326 – 2.326 –

σ2
∗

0.856 – 0.856 –
∗ bCI is the confidence interval based on the bootstrap percentile method.
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Table 2. Comparison of Two Radiologists on Calcium Scoring

Radiologist A Radiologist B

Estimate Estimate Difference

µ 35.833 36.125 -0.292

σ2
W 7.667 0.125 7.542

σ2
B 1025.7 1116.2 -90.5

Intra ICC 0.993 0.999

Individual Agreement without Reference

Estimate (95% CI) 95% bCI∗

CIA 0.754 (0.298, 1.0) (0.219, 1.0)

τ 2
∗

1.271 –

σ2
D 2.457 –

σ2
∗

3.896 –

∗ bCI is the confidence interval based on the bootstrap percentile method.
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Table 3. Comparison of MRA-2D and MRA-3D with IA for Left Carotid Artery

MRA-2D MRA-3D IA

estimate estimate estimate

µ 43.7 48.2 38.0

σ2
W 576.7 520.2 139.7

σ2
B 966.5 953.7 1061.2

Intra ICC 0.626 0.647 0.884

Individual Agreement

Reference: IA No reference

estimate (95% CI) 95% bCI∗ Estimate (95% CI) 95% bCI∗

CIA 0.209 (0.032,0.386) (0.085,0.420) 0.632 (0.441,0.823) (0.454,0.828)

τ 2
∗

323.8 – 240.5 –

σ2
D 579.3 – 428.7 –

σ2
∗

344.1 – 412.2 –

Pairwise: MRA-2D vs. MRA-3D

CIA – – 0.881 (0.688,1.0) (0.684,1.0)

Pairwise: MRA-2D vs. IA

CIA 0.231 (0.035,0.427) (0.092,0.468) 0.592 (0.348,0.835) (0.382,0.867)

Pairwise: MRA-3D vs. IA

CIA 0.191 (0.026, 0.357) (0.076, 0.400) 0.452 (0.242,0.661) (0.273,0.690)
∗ bCI is the confidence interval based on the bootstrap percentile method.
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Table 4. Comparison of MRA-2D and MRA-3D with IA for Right Carotid Artery

MRA-2D MRA-3D IA

estimate estimate estimate

µ 45.9 43.9 33.8

σ2
W 568.5 550.0 88.0

σ2
B 887.7 903.6 965.2

Intra ICC 0.610 0.622 0.916

Individual Agreement

Reference: IA No reference

estimate (95% CI) 95% bCI∗ Estimate (95% CI) 95% bCI∗

CIA 0.172 (0.078,0.265) (0.094,0.244) 0.738 (0.587,0.889) (0.589,0.881)

τ 2
∗

189.4 – 143.0 –

σ2
D 255.1 – 202.3 –

σ2
∗

323.6 – 402.2 –

Pairwise: MRA-2D vs. MRA-3D

CIA – – 0.917 (0.729,1.0) (0.734, 1.0))

Pairwise: MRA-2D vs. IA

CIA 0.183 (0.083,0.284) (0.104,0.307) 0.684 (0.562,0.807) (0.572,0.814)

Pairwise: MRA-3D vs. IA

CIA 0.161 (0.060,0.262) (0.084,0.295) 0.584 (0.370,0.798) (0.392,0.815)
∗ bCI is the confidence interval based on the bootstrap percentile method.
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Table 5. Comparison of Observers and Automatic Machine in Measuring Blood Pressure.

Observer 1 Observer 2 Machine

estimate estimate estimate

µ 127.4 127.3 143.0

σ2
W 37.4 38.0 83.1

σ2
B 936.0 917.1 983.2

Intra ICC 0.962 0.960 0.922

Individual Agreement

Reference: Observers No reference

estimate (95% CI) 95% bCI∗ Estimate (95% CI) 95% bCI∗

Overall results

CIA 0.111 (0.046,0.177) (0.064,0.205) 0.225 (0.112,0.339) (0.139,0.384)

τ 2
∗

278.1 – 181.5 –

σ2
D 311.4 – 199.8 –

σ2
∗

60.4 – 52.8 –

Pairwise: Observer 1 vs. Observer 2

CIA – – 1.0 –

Pairwise: Machine vs. observer 1

CIA 0.110 (0.0460,0.175) (0.064,0.210) 0.178 (0.086,0.270) (0.107,0.302)

Pairwise: Machine vs. observer 2

CIA 0.112 (0.046,0.178) (0.065,0.213) 0.179 (0.084,0.274) (0.107,0.310)
∗ bCI is the confidence interval based on the bootstrap percentile method.
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Table 6. Comparison of Observers and Digital Device in Measuring Blood Pressure.

Systolic Diastolic

Observer Digital Device Observer Digital Device

estimate estimate estimate estimate

µ 129.3 133.4 79.0 77.8

σ2
W 11.4 – 8.4 –

σ2
B 938.7 – 236.3 –

Intra ICC 0.988 – 0.966 –

Individual Agreement with Observer as reference

Systolic Diastolic

estimate (95% CI) 95% bCI∗ Estimate (95% CI) 95% bCI∗

CIA 0.462 (0.346,0.578) (0.356,0.589) 0.729 (0.633,0.826) (0.588,0.890)
∗ bCI is the confidence interval based on the bootstrap percentile method.
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